Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Chris Tyler
- Beth L Armstrong
- Justin West
- Ritin Mathews
- Jun Qu
- Kyle Kelley
- Rama K Vasudevan
- Alex Plotkowski
- Amit Shyam
- Corson Cramer
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Meghan Lamm
- Scott Smith
- Sergei V Kalinin
- Stephen Jesse
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Akash Jag Prasad
- Alice Perrin
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Ben Lamm
- Bogdan Dryzhakov
- Brian Gibson
- Brian Post
- Bryan Lim
- Calen Kimmell
- Christopher Ledford
- David J Mitchell
- Emma Betters
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Greg Corson
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Klett
- Jamieson Brechtl
- Jesse Heineman
- Jewook Park
- John Potter
- Jordan Wright
- Josh B Harbin
- Jovid Rakhmonov
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Khryslyn G Araño
- Liam Collins
- Marm Dixit
- Marti Checa Nualart
- Matthew S Chambers
- Maxim A Ziatdinov
- Michael Kirka
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Olga S Ovchinnikova
- Ondrej Dyck
- Peeyush Nandwana
- Rangasayee Kannan
- Saban Hus
- Sergiy Kalnaus
- Shajjad Chowdhury
- Steven Randolph
- Sunyong Kwon
- Tolga Aytug
- Tony L Schmitz
- Trevor Aguirre
- Vladimir Orlyanchik
- Ying Yang
- Yiyu Wang
- Yongtao Liu

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.