Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- David Olvera Trejo
- Diana E Hun
- J.R. R Matheson
- James J Nutaro
- Jaydeep Karandikar
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Ryan Dehoff
- Scott Smith
- Stephen M Killough
- Sudip Seal
- Vincent Paquit
- Akash Jag Prasad
- Ali Passian
- Brian Gibson
- Brian Post
- Bryan Lim
- Bryan Maldonado Puente
- Calen Kimmell
- Corey Cooke
- Emma Betters
- Gina Accawi
- Greg Corson
- Gurneesh Jatana
- Harper Jordan
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Josh B Harbin
- Mark M Root
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Pablo Moriano Salazar
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Ryan Kerekes
- Sally Ghanem
- Tomas Grejtak
- Tony L Schmitz
- Varisara Tansakul
- Vladimir Orlyanchik
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.