Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Alex Plotkowski
- Amit Shyam
- Srikanth Yoginath
- Anees Alnajjar
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Jaydeep Karandikar
- Pratishtha Shukla
- Scott Smith
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Akash Jag Prasad
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Beth L Armstrong
- Brian Gibson
- Brian Post
- Calen Kimmell
- Craig A Bridges
- Emma Betters
- Georgios Polyzos
- Gerry Knapp
- Greg Corson
- Harper Jordan
- Jaswinder Sharma
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Mariam Kiran
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Ryan Dehoff
- Sheng Dai
- Sunyong Kwon
- Tony L Schmitz
- Varisara Tansakul
- Vladimir Orlyanchik
- Ying Yang

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.