Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Alex Plotkowski
- Amit Shyam
- Kyle Kelley
- Rama K Vasudevan
- Srikanth Yoginath
- Anees Alnajjar
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- James J Nutaro
- Jaydeep Karandikar
- Pratishtha Shukla
- Scott Smith
- Sergei V Kalinin
- Sergiy Kalnaus
- Stephen Jesse
- Sudip Seal
- Sumit Bahl
- Akash Jag Prasad
- Alice Perrin
- Ali Passian
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Gibson
- Brian Post
- Calen Kimmell
- Craig A Bridges
- Emma Betters
- Georgios Polyzos
- Gerry Knapp
- Greg Corson
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jaswinder Sharma
- Jesse Heineman
- Jewook Park
- Joel Asiamah
- Joel Dawson
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Mariam Kiran
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Olga S Ovchinnikova
- Ondrej Dyck
- Peeyush Nandwana
- Ryan Dehoff
- Saban Hus
- Sheng Dai
- Steven Randolph
- Sunyong Kwon
- Tony L Schmitz
- Varisara Tansakul
- Vladimir Orlyanchik
- Ying Yang
- Yongtao Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.