Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Corson Cramer
- Steve Bullock
- Chris Masuo
- Peter Wang
- Alex Walters
- Greg Larsen
- James Klett
- Trevor Aguirre
- Brian Gibson
- Joshua Vaughan
- Luke Meyer
- Tomonori Saito
- Udaya C Kalluri
- Vlastimil Kunc
- William Carter
- Ahmed Hassen
- Akash Jag Prasad
- Amit Shyam
- Beth L Armstrong
- Calen Kimmell
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Diana E Hun
- Dustin Gilmer
- Easwaran Krishnan
- Gordon Robertson
- J.R. R Matheson
- James Manley
- Jamieson Brechtl
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joe Rendall
- John Lindahl
- John Potter
- Jordan Wright
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Mengjia Tang
- Michael Kirka
- Muneeshwaran Murugan
- Nadim Hmeidat
- Riley Wallace
- Ritin Mathews
- Sana Elyas
- Steven Guzorek
- Tony Beard
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Zoriana Demchuk

The technologies provide additively manufactured thermal protection system.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.