Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Hongbin Sun
- Prashant Jain
- Vlastimil Kunc
- Ahmed Hassen
- Dan Coughlin
- Diana E Hun
- Easwaran Krishnan
- Ian Greenquist
- Ilias Belharouak
- James Manley
- Jamieson Brechtl
- Jim Tobin
- Joe Rendall
- Josh Crabtree
- Karen Cortes Guzman
- Kashif Nawaz
- Kim Sitzlar
- Kuma Sumathipala
- Mengjia Tang
- Merlin Theodore
- Muneeshwaran Murugan
- Nate See
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Steven Guzorek
- Subhabrata Saha
- Tomonori Saito
- Vipin Kumar
- Vishaldeep Sharma
- Vittorio Badalassi
- Zoriana Demchuk

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Current fuel used in nuclear light water reactors that generate energy for the grid use a solid form of uranium that is heated and processed to form pellets.