Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Hongbin Sun
- Prashant Jain
- Ruhul Amin
- David L Wood III
- Diana E Hun
- Easwaran Krishnan
- Georgios Polyzos
- Ian Greenquist
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Joe Rendall
- Junbin Choi
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Lu Yu
- Marm Dixit
- Mengjia Tang
- Muneeshwaran Murugan
- Nate See
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Tomonori Saito
- Vishaldeep Sharma
- Vittorio Badalassi
- Yaocai Bai
- Zhijia Du
- Zoriana Demchuk

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.