Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- James A Haynes
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Brian Post
- Callie Goetz
- Christopher Fancher
- Christopher Hobbs
- Dean T Pierce
- Diana E Hun
- Easwaran Krishnan
- Eddie Lopez Honorato
- Fred List III
- Gerry Knapp
- Gordon Robertson
- James Manley
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Joe Rendall
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kashif Nawaz
- Keith Carver
- Kuma Sumathipala
- Matt Kurley III
- Mengjia Tang
- Muneeshwaran Murugan
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Ryan Heldt
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Thomas Butcher
- Tomonori Saito
- Tyler Gerczak
- William Peter
- Ying Yang
- Yukinori Yamamoto
- Zoriana Demchuk

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.