Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Sergei V Kalinin
- Adam Stevens
- Alex Walters
- Amy Elliott
- Anton Ievlev
- Bogdan Dryzhakov
- Cameron Adkins
- Diana E Hun
- Easwaran Krishnan
- Erin Webb
- Evin Carter
- Isha Bhandari
- James Manley
- Jamieson Brechtl
- Jeremy Malmstead
- Joe Rendall
- Joshua Vaughan
- Karen Cortes Guzman
- Kashif Nawaz
- Kevin M Roccapriore
- Kitty K Mccracken
- Kuma Sumathipala
- Liam Collins
- Liam White
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mengjia Tang
- Michael Borish
- Muneeshwaran Murugan
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Stephen Jesse
- Steven Randolph
- Sudarsanam Babu
- Tomonori Saito
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yongtao Liu
- Yukinori Yamamoto
- Zoriana Demchuk

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.