Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Marm Dixit
- Ruhul Amin
- Vincent Paquit
- Xiang Lyu
- Akash Jag Prasad
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Costas Tsouris
- David L Wood III
- Diana E Hun
- Easwaran Krishnan
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Haley
- James Manley
- James Parks II
- James Szybist
- Jamieson Brechtl
- Jaydeep Karandikar
- Joe Rendall
- Jonathan Willocks
- Junbin Choi
- Karen Cortes Guzman
- Kashif Nawaz
- Khryslyn G Araño
- Kuma Sumathipala
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Mengjia Tang
- Michael Toomey
- Michelle Lehmann
- Muneeshwaran Murugan
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Ryan Dehoff
- Todd Toops
- Tomonori Saito
- Vladimir Orlyanchik
- Yaocai Bai
- Zackary Snow
- Zhijia Du
- Zoriana Demchuk

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.