Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Peeyush Nandwana
- Alice Perrin
- Amir K Ziabari
- Beth L Armstrong
- Brian Post
- Bruce Moyer
- Corson Cramer
- Debjani Pal
- Diana E Hun
- Easwaran Krishnan
- Fred List III
- James Klett
- James Manley
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Joe Rendall
- Justin Griswold
- Karen Cortes Guzman
- Kashif Nawaz
- Keith Carver
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mengjia Tang
- Mike Zach
- Muneeshwaran Murugan
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Tomonori Saito
- Trevor Aguirre
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zoriana Demchuk

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.