Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Hongbin Sun
- Jamieson Brechtl
- Kashif Nawaz
- Prashant Jain
- Sergei V Kalinin
- Stephen Jesse
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Diana E Hun
- Easwaran Krishnan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ian Greenquist
- Ilias Belharouak
- James Manley
- Jewook Park
- Joe Rendall
- Kai Li
- Karen Cortes Guzman
- Kevin M Roccapriore
- Kuma Sumathipala
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mengjia Tang
- Muneeshwaran Murugan
- Nate See
- Neus Domingo Marimon
- Nithin Panicker
- Olga S Ovchinnikova
- Ondrej Dyck
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Saban Hus
- Steven Randolph
- Tomonori Saito
- Vishaldeep Sharma
- Vittorio Badalassi
- Yongtao Liu
- Zoriana Demchuk

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.