Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- Diana E Hun
- James J Nutaro
- Philip Bingham
- Pratishtha Shukla
- Ryan Dehoff
- Sudip Seal
- Vincent Paquit
- Ali Passian
- Bryan Lim
- Easwaran Krishnan
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- James Manley
- Jamieson Brechtl
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Michael Kirka
- Muneeshwaran Murugan
- Nance Ericson
- Obaid Rahman
- Pablo Moriano Salazar
- Peeyush Nandwana
- Philip Boudreaux
- Rangasayee Kannan
- Tomas Grejtak
- Tomonori Saito
- Varisara Tansakul
- Yiyu Wang
- Zoriana Demchuk

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.