Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Sergiy Kalnaus
- Alexandre Sorokine
- Beth L Armstrong
- Clinton Stipek
- Daniel Adams
- Diana E Hun
- Easwaran Krishnan
- Georgios Polyzos
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Jessica Moehl
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Mengjia Tang
- Muneeshwaran Murugan
- Nancy Dudney
- Philipe Ambrozio Dias
- Taylor Hauser
- Tomonori Saito
- Viswadeep Lebakula
- Zoriana Demchuk

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.