Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Beth L Armstrong
- Justin West
- Ritin Mathews
- Jun Qu
- Alex Plotkowski
- Amit Shyam
- Corson Cramer
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Meghan Lamm
- Scott Smith
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Akash Jag Prasad
- Alice Perrin
- Ben Lamm
- Brian Gibson
- Brian Post
- Bryan Lim
- Calen Kimmell
- Christopher Ledford
- David J Mitchell
- Diana E Hun
- Easwaran Krishnan
- Emma Betters
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Greg Corson
- James Klett
- James Manley
- Jamieson Brechtl
- Jesse Heineman
- Joe Rendall
- John Potter
- Jordan Wright
- Josh B Harbin
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kashif Nawaz
- Khryslyn G Araño
- Kuma Sumathipala
- Marm Dixit
- Matthew S Chambers
- Mengjia Tang
- Michael Kirka
- Muneeshwaran Murugan
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Rangasayee Kannan
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Tolga Aytug
- Tomonori Saito
- Tony L Schmitz
- Trevor Aguirre
- Vladimir Orlyanchik
- Ying Yang
- Yiyu Wang
- Zoriana Demchuk

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.