Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Michael Kirka
- Ritin Mathews
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Brian Post
- Christopher Ledford
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Peeyush Nandwana
- Scott Smith
- Akash Jag Prasad
- Alice Perrin
- Amir K Ziabari
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Corson Cramer
- Diana E Hun
- Easwaran Krishnan
- Emma Betters
- Fred List III
- Greg Corson
- James Klett
- James Manley
- Jamieson Brechtl
- Jesse Heineman
- Joe Rendall
- John Potter
- Josh B Harbin
- Karen Cortes Guzman
- Kashif Nawaz
- Keith Carver
- Kuma Sumathipala
- Mengjia Tang
- Muneeshwaran Murugan
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Tomonori Saito
- Tony L Schmitz
- Trevor Aguirre
- Vincent Paquit
- Vladimir Orlyanchik
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zoriana Demchuk

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.