Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Josh Michener
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Alice Perrin
- Andrzej Nycz
- Austin Carroll
- Carrie Eckert
- Christopher Ledford
- Clay Leach
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Joanna Tannous
- John F Cahill
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Mengdawn Cheng
- Michael Kirka
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paul Abraham
- Paula Cable-Dunlap
- Ryan Dehoff
- Serena Chen
- Soydan Ozcan
- Tyler Smith
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu
- Ying Yang

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.