Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Srikanth Yoginath
- Venugopal K Varma
- Alice Perrin
- Anees Alnajjar
- James A Haynes
- James J Nutaro
- Mahabir Bhandari
- Pratishtha Shukla
- Ryan Dehoff
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Ying Yang
- Adam Aaron
- Ali Passian
- Andres Marquez Rossy
- Beth L Armstrong
- Charles D Ottinger
- Christopher Ledford
- Craig A Bridges
- Georgios Polyzos
- Gerry Knapp
- Govindarajan Muralidharan
- Harper Jordan
- Jaswinder Sharma
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Michael Kirka
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Rose Montgomery
- Sergey Smolentsev
- Sheng Dai
- Sunyong Kwon
- Thomas R Muth
- Varisara Tansakul
- Yan-Ru Lin

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.