Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alexey Serov
- Jaswinder Sharma
- Xiang Lyu
- Amit K Naskar
- Beth L Armstrong
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Paul Abraham
- Ritu Sahore
- Sergey Smolentsev
- Todd Toops
- Xiaohan Yang
- Yang Liu

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

Free-standing, thin films were fabricated with a binder resulting in nearly an order of magnitude thickness decrease while increasing porosity and activation energy. These effects of such diminished significantly. Free-standing films could be fabricated with a binder.