Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Radu Custelcean
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Omer Onar
- Singanallur Venkatakrishnan
- Adam Siekmann
- Amir K Ziabari
- Benjamin L Doughty
- Bruce Moyer
- Diana E Hun
- Erdem Asa
- Gs Jung
- Nikki Thiele
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Santa Jansone-Popova
- Stephen M Killough
- Subho Mukherjee
- Vincent Paquit
- Alexander I Wiechert
- Bryan Maldonado Puente
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Hyeonsup Lim
- Ilja Popovs
- Isabelle Snyder
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Md Faizul Islam
- Michael Kirka
- Mina Yoon
- Nolan Hayes
- Obaid Rahman
- Parans Paranthaman
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Santanu Roy
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Subhamay Pramanik
- Uvinduni Premadasa
- Vera Bocharova
- Yingzhong Ma

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.