Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Corson Cramer
- Costas Tsouris
- Steve Bullock
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Amit K Naskar
- Greg Larsen
- Gyoung Gug Jang
- James Klett
- Trevor Aguirre
- Alexander I Wiechert
- Gs Jung
- Jaswinder Sharma
- Logan Kearney
- Michael Cordon
- Michael Toomey
- Nihal Kanbargi
- Vlastimil Kunc
- Ahmed Hassen
- Ajibola Lawal
- Arit Das
- Benjamin L Doughty
- Benjamin Manard
- Beth L Armstrong
- Canhai Lai
- Charles F Weber
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dhruba Deka
- Dustin Gilmer
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- James Parks II
- Jeffrey Einkauf
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Jong K Keum
- Jordan Wright
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Kirka
- Mina Yoon
- Nadim Hmeidat
- Robert E Norris Jr
- Sana Elyas
- Santanu Roy
- Sreshtha Sinha Majumdar
- Steven Guzorek
- Sumit Gupta
- Tomonori Saito
- Tony Beard
- Uvinduni Premadasa
- Vandana Rallabandi
- Vera Bocharova
- Yeonshil Park

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

The technologies provide additively manufactured thermal protection system.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Sugars (glucose and xylose) can be converted into dioxolanes which phase separate from water. These dioxolanes can be heterolytically cleaved which acts as a controlled dehydration reaction which results in ring closing of the subsequent structure to furans such as 5-hydr