Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Michael Kirka
- Kyle Kelley
- Rama K Vasudevan
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Peeyush Nandwana
- Sergei V Kalinin
- Alexandre Sorokine
- Alice Perrin
- Amir K Ziabari
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Post
- Clinton Stipek
- Corson Cramer
- Daniel Adams
- Fred List III
- James Klett
- Jessica Moehl
- Keith Carver
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Philip Bingham
- Philipe Ambrozio Dias
- Richard Howard
- Roger G Miller
- Sarah Graham
- Stephen Jesse
- Steve Bullock
- Steven Randolph
- Sudarsanam Babu
- Taylor Hauser
- Thomas Butcher
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Viswadeep Lebakula
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yongtao Liu
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.