Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Adam Stevens
- Alexandre Sorokine
- Alex Walters
- Amy Elliott
- Bruce Moyer
- Cameron Adkins
- Clinton Stipek
- Daniel Adams
- Debjani Pal
- Erin Webb
- Evin Carter
- Isha Bhandari
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jessica Moehl
- Joshua Vaughan
- Justin Griswold
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Liam White
- Luke Sadergaski
- Michael Borish
- Mike Zach
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Peter Wang
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sandra Davern
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Taylor Hauser
- Tyler Smith
- Viswadeep Lebakula
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.