Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Hongbin Sun
- Prashant Jain
- Vlastimil Kunc
- Ahmed Hassen
- Alexander I Wiechert
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- Dan Coughlin
- Derek Dwyer
- Ian Greenquist
- Ilias Belharouak
- Jim Tobin
- Joanna Mcfarlane
- Jonathan Willocks
- Josh Crabtree
- Kim Sitzlar
- Louise G Evans
- Matt Vick
- Mengdawn Cheng
- Merlin Theodore
- Nate See
- Nithin Panicker
- Paula Cable-Dunlap
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard L. Reed
- Ruhul Amin
- Steven Guzorek
- Subhabrata Saha
- Vandana Rallabandi
- Vipin Kumar
- Vishaldeep Sharma
- Vittorio Badalassi

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.