Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Alexey Serov
- Alice Perrin
- Costas Tsouris
- Jaswinder Sharma
- Jonathan Willocks
- Steven J Zinkle
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Alexander I Wiechert
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Benjamin Manard
- Beth L Armstrong
- Bruce A Pint
- Charles F Weber
- Christopher Ledford
- Derek Dwyer
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- James A Haynes
- James Szybist
- Joanna Mcfarlane
- Jong K Keum
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Louise G Evans
- Marm Dixit
- Matt Vick
- Meghan Lamm
- Mengdawn Cheng
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Radu Custelcean
- Richard L. Reed
- Ritu Sahore
- Ryan Dehoff
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Todd Toops
- Vandana Rallabandi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.