Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Philip Bingham
- Ryan Dehoff
- Vincent Paquit
- Alexander I Wiechert
- Benjamin Manard
- Brian Sanders
- Charles F Weber
- Costas Tsouris
- Derek Dwyer
- Diana E Hun
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Jerry Parks
- Joanna Mcfarlane
- Jonathan Willocks
- Louise G Evans
- Mark M Root
- Matt Vick
- Mengdawn Cheng
- Michael Kirka
- Obaid Rahman
- Paul Abraham
- Paula Cable-Dunlap
- Philip Boudreaux
- Richard L. Reed
- Vandana Rallabandi
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

The invention provides on-line analysis of droplets for mass spectrometry.