Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Ying Yang
- Jun Qu
- Adam Willoughby
- Alex Plotkowski
- Alice Perrin
- Amit Shyam
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- Edgar Lara-Curzio
- James A Haynes
- Meghan Lamm
- Michael Kirka
- Rishi Pillai
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Tomas Grejtak
- Yanli Wang
- Yutai Kato
- Alexander I Wiechert
- Benjamin Manard
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bryan Lim
- Charles F Weber
- Charles Hawkins
- Costas Tsouris
- David J Mitchell
- Derek Dwyer
- Eric Wolfe
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- James Klett
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Louise G Evans
- Marie Romedenne
- Marm Dixit
- Matthew S Chambers
- Matt Vick
- Mengdawn Cheng
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Peeyush Nandwana
- Priyanshi Agrawal
- Rangasayee Kannan
- Richard L. Reed
- Ryan Dehoff
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Vandana Rallabandi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yong Chae Lim
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.