Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Costas Tsouris
- Alexander I Wiechert
- Benjamin Manard
- Bogdan Dryzhakov
- Charles F Weber
- Christopher Rouleau
- Derek Dwyer
- Diana E Hun
- Easwaran Krishnan
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Manley
- Jamieson Brechtl
- Joanna Mcfarlane
- Joe Rendall
- Jonathan Willocks
- Jong K Keum
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Kyle Kelley
- Louise G Evans
- Matt Vick
- Mengdawn Cheng
- Mengjia Tang
- Mina Yoon
- Muneeshwaran Murugan
- Paula Cable-Dunlap
- Radu Custelcean
- Richard L. Reed
- Steven Randolph
- Tomonori Saito
- Vandana Rallabandi
- Zoriana Demchuk

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.