Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Viswadeep Lebakula
- Aaron Myers
- Alexandre Sorokine
- Annetta Burger
- Brian Sanders
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Corey Cooke
- Daniel Adams
- Debraj De
- Eve Tsybina
- Gautam Malviya Thakur
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Gaboardi
- Jeff Foster
- Jerry Parks
- Jesse McGaha
- Jessica Moehl
- John F Cahill
- John Holliman II
- Josh Michener
- Justin Cazares
- Kevin Sparks
- Liangyu Qian
- Liz McBride
- Mark M Root
- Matt Larson
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Paul Abraham
- Peter Wang
- Philipe Ambrozio Dias
- Ryan Kerekes
- Sally Ghanem
- Taylor Hauser
- Todd Thomas
- Vilmos Kertesz
- Xiaohan Yang
- Xiuling Nie
- Yang Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).