Image

Daryl Yang

Distinguished Staff Fellow

Daryl Yang joined Oak Ridge National Laboratory in 2024 as a Liane B. Russell Distinguished Staff Fellow (DSF). He is working in the Plant-Soil Interactions group in the Environmental Sciences Division, Biological and Environmental Systems Science Directorate (BESSD). Daryl’s overall research is in integrating novel Earth observations, ecological theories, and process models to understand the interconnections between ecosystem dynamics and climate change. He will focus his DSF research on combining multiscale remote-sensing and numeric models to understand fire-driven ecosystem transition and its impacts on soil-land-atmosphere interactions across Arctic and boreal ecosystems. His work is expected to improve our ability to monitor and model fire-impacted ecosystems in the circumpolar Arctic. Daryl is a member and task lead of DOE’s Next Generation Ecosystem Experiment Arctic (NGEE Arctic) project. He is also a co-lead of the Terrestrial Ecosystem Community of Practice for Interagency Arctic Research Policy Committee (IARPC), a User Working Group member of ORNL’s Distributed Active Archive Center (DAAC) and NASA’s Spectral Imaging Working Group. 

Daryl received his Ph.D in Ecology and Evolution from Stony Brook University, during which he was a Future Investigator in NASA’s Earth and Space Science and Technology (FINESST) program. 

2024 - Present: Distinguished Staff Fellow, Oak Ridge National Laboratory

2022 - 2023: NASA FINESST Fellow, Stony Brook University, Brookhaven National Laboratory

2018 - 2022: Research Assistant, Stony Brook University, Brookhaven National Laboratory

2017 - 2018: Teaching Assistant, Stony Brook University

Department of Energy’s NGEE-Arctic project Early Career Excellence Award (2022)

Future Investigator in NASA Earth and Space Science and Technology Award (2022)

Brookhaven National Laboratory Dr. Mow Shiah Lin Scholarship (2022)

Stony Brook University John Dunn Award (2021)

First Place Poster Award for PECORA 21/ISRSE 38 Conference (2019)

Stony Brook University Recruitment Fellowship (2017)

“Zhou Ting Ru” Academic Excellence Award, Beijing Normal University  (2017)

First Academic Scholarship, Beijing Normal University (2014 - 2017)

National Undergraduate Scholarship, Ministry of Education of China (2014)

2023   Ph.D. in Ecology and Evolution; Stony Brook University, Stony Brook, NY; Brookhaven National Laboratory, Upton, NY, USA.

2017   M.S. in Global Environmental Change, Beijing Normal University, Beijing, China                               

2014   B.S. in Surveying and Mapping Engineering, Central South University, Changsha, China 

Guest Editor for Environmental Research Ecology

Co-lead of the Terrestrial Ecosystem Community of Practice for Interagency Arctic Research Policy Committee (IARPC)

User Working Group Member of ORNL's Distributed Active Archive Center (DAAC)

Member of NASA ABoVE’s Spectra Imaging Working Group

Reviewer for Global Change Biology, Remote Sensing of Environment, Global Ecology and Biogeography, Earth’s Future, ISPRS Journal of Photogrammetry and Remote sensing, International Journal of Applied Earth Observation and Geoinformation, Polar Research, Geoscience and Remote Sensing

August 2024
Journal: Bulletin of the American Meteorological Society
View All

Zhao, Y., Wang, Z., Yan, Z., Moon, M., Yang, D., Meng, L., Bucher, S. F., Wang, J., Song, G., Guo, Z., Su, Y., & Wu, J. (2024). Exploring the role of biotic factors in regulating the spatial variability in land surface phenology across four temperate forest sites. New Phytologist. https://doi.org/10.1111/nph.19684 

Berner, L. T., Orndahl, K. M., Rose, M., Tamstorf, M., Arndal, M. F., Alexander, H. D., Humphreys, E. R., Loranty, M. M., Ludwig, S. M., Nyman, J., Juutinen, S., Aurela, M., Happonen, K., Mikola, J., Mack, M. C., Vankoughnett, M. R., Iversen, C. M., Salmon, V. G., Yang, D., … Goetz, S. J. (2024). The Arctic Plant Aboveground Biomass Synthesis Dataset. Scientific Data, 11(1), 305. https://doi.org/10.1038/s41597-024-03139-w 

Lin, Z., Cheng, K. H., Yang, D., Xu, F., Song, G., Meng, R., Wang, J., Zhu, X., Ng, M., & Wu, J. (2024). Ecoregion-wise fractional mapping of tree functional composition in temperate mixed forests with sentinel data: Integrating time-series spectral and radar data. Remote Sensing of Environment, 304, 114026. https://doi.org/10.1016/j.rse.2024.114026 

Song, G., Wang, J., Zhao, Y., Yang, D., Lee, C. K. F., Guo, Z., Detto, M., Alberton, B., Morellato, P., Nelson, B., & Wu, J. (2024). Scale matters: Spatial resolution impacts tropical leaf phenology characterized by multi-source satellite remote sensing with an ecological-constrained deep learning model. Remote Sensing of Environment, 304, 114027. https://doi.org/10.1016/j.rse.2024.114027 

Frost, G.V., Macander, M.J., Bhatt, U.S., Berner, L.T., Bjerke, J.W., Epstein, H.E., Forbes, B.C., Lara, M.J., Magnússon R.Í., Montesano, P.M, Phoenix, G.K., Serbin, S.P., Tømmerik, H., Waigl, C., Walker, D.A., and Yang, D. 2023. Tundra Greenness. Arctic Report Card 2023, R.L. Thoman, T.A. Moon, and M.L. Druckenmiller (eds.). https://doi.org/10.25923/s86a-jn24  

Schore, A. I. G., Fraterrigo, J. M., Salmon, V. G., Yang, D., & Lara, M. J. (2023). Nitrogen fixing shrubs advance the pace of tall-shrub expansion in low-Arctic tundra. Communications Earth & Environment, 4(1), 421. https://doi.org/10.1038/s43247-023-01098-5  

Yang, D., McMahon, A., Hantson, W., Anderson, J., & Serbin, S. P. (2023). PiCAM: A Raspberry Pi-based open-source, low-power camera system for monitoring plant phenology in Arctic environments. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210x.14231 

Frost, G.V., Macander, M.J., Bhatt, U.S., Berner, L.T., Bjerke, J.W., Epstein, H.E., Forbes, B.C., Goetz, S.J., Lara M.J., Park, T., Phoenix, G.K., Serbin, S.P., Tommervik, H., Walker, D.A., Yang, D., 2023. State of the Climate in 2022 – The Arctic. Bulletin of American Meteorological Society. https://doi.org/10.1175/BAMS-D-23-0079.1  

Wang, J., Song, G., Liddell, M., Morellato, P., Lee, C., Yang, D., Alberton, B., Detto, M., Ma, X., Zhao, Y., Yeung, H., Zhang, H., Ng, M., Nelson, B., Heute, A. An ecologically-constrained deep learning model for tropical leaf phenology monitoring using PlanetScope satellites. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2022.113429  

Yang, D., Morrison, B.D., Hanston, W., McMahon, A., Baskaran, L., Hayes, D.J., Miller, C.E., Serbin, S.P., 2023. Integrating very-high-resolution UAS data and airborne imaging spectroscopy to map the fractional composition of Arctic plant functional types in Western Alaska. Remote Sens Environ 286, 113430. https://doi.org/10.1016/j.rse.2022.113430 

Frost, G.V., Macander, M.J., Bhatt, U.S., Berner, L.T., Bjerke, J.W., Epstein, H.E., Forbes, B.C., Goetz, S.J., Lara M.J., Park, T., Phoenix, G.K., Serbin, S.P., Tommervik, H., Walker, D.A., Yang, D., 2022, NOAA 2022 Arctic Report Card – Tundra Greenness. 10.25923/mhrv-gr76 

Frost, G.V., Macander, M.J., Bhatt, U.S., Berner, L.T., Bjerke, J.W., Epstein, H.E., Forbes, B.C., Goetz, S.J., Lara M.J., Park, T., Phoenix, G.K., Serbin, S.P., Tommervik, H., Walker, D.A., Yang, D., 2022. State of the Climate in 2021 – The Arctic. Bulletin of American Meteorological Society. https://www.ametsoc.org/index.cfm/ams/  

Yang, D., Morrison, B.D., Davidson, K.J., Lamour, J., Li, Q., Nelson, P.R., Hantson, W., Hayes, D.J., Swetnam, T.L., McMahon, A., Anderson, J., Ely, K.S., Rogers, A., Serbin, S.P., 2022. Remote Sensing from Unoccupied Aerial Systems: Opportunities to Enhance Arctic Plant Ecology in a Changing Climate. Journal of Ecology. https://doi.org/10.1111/1365-2745.13976 

Nelson, P.R., Maguire, A.J., Pierrat, Z., Orcutt, E.L., Yang, D., Serbin, S.P., Frost, G.V., Macander, M.J., Magney, T.S., Thompson, D.R., Wang, J., Oberbauer, S.F., Zesati, S.A.V., Davidson, S.J., Epstein, H., Unger, S., Campbell, P.K.E., Carmon, N., Velez-Reyes, M., Huemmrich, K.F., 2022. Remote Sensing of Tundra Ecosystems using High Spectral Resolution Reflectance: Opportunities and Challenges. https://doi.org/10.1002/essoar.10508585.1 

Frost, G.V., Macander, M.J., Bhatt, U.S., Berner, L.T., Bjerke, J.W., Epstein, H.E., Forbes, B.C., Goetz, S.J., Lara M.J., Park, T., Phoenix, G.K., Serbin, S.P., Tommervik, H., Walker, D.A., Yang, D., 2021, NOAA 2021 Arctic Report Card – Tundra Greeness. DOI: 10.25923/8n78-wp73

Yang, D., Morrison, B.D., Hantson, W., Breen, A.L., McMahon, A., Li, Q., Salmon, V.G., Hayes, D.J., Serbin, S.P., 2021. Landscape-scale characterization of Arctic tundra vegetation composition, structure, and function with a multi-sensor unoccupied aerial system. Environ Res Lett. https://doi.org/10.1088/1748-9326/ac1291 

Wang, J., Yang, D., Chen, S., Zhu, X., Wu, S., Bogonovich, M., Guo, Z., Zhu, Z., Wu, J., 2021. Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images. Remote Sens Environ 264, 112604. https://doi.org/10.1016/j.rse.2021.112604 

Burnett, A.C., Anderson, J., Davidson, K.J., Ely, K.S., Lamour, J., Li, Q., Morrison, B.D., Yang, D., Rogers, A., Serbin, S.P., 2021. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. J Exp Bot erab295-. https://doi.org/10.1093/jxb/erab295   

Liu, X., Guo, L., Cui, X., Butnor, J.R., Boyer, E.W., Yang, D., Chen, J., Fan, B., 2021. An Automatic Processing Framework for In Situ Determination of Ecohydrological Root Water Content by Ground-Penetrating Radar. Ieee T Geosci Remote PP, 1–15. https://doi.org/10.1109/tgrs.2021.3065066  

Burnett, A.C., Serbin, S.P., Lamour, J., Anderson, J., Davidson, K.J., Yang, D., Rogers, A., 2021. Seasonal trends in photosynthesis and leaf traits in scarlet oak. Tree Physiol. https://doi.org/10.1093/treephys/tpab015  

Ely, K.S., Rogers, A., Agarwal, … Yang, D., 2021. A reporting format for leaf-level gas exchange data and metadata. Ecol Inform 101232. https://doi.org/10.1016/j.ecoinf.2021.101232 

Yang, D., Meng, R., Morrison, B.D., McMahon, A., Hantson, W., Hayes, D.J., Breen, A.L., Salmon, V.G., Serbin, S.P., 2020. A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra. Remote Sens-based 12, 2638. https://doi.org/10.3390/rs12162638 

Wang, J., Yang, D., Detto, M., Nelson, B.W., Chen, M., Guan, K., Wu, S., Yan, Z., Wu, J., 2020. Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest. Remote Sens Environ 246, 111865. https://doi.org/10.1016/j.rse.2020.111865 

Meng, R., Yang, D., McMahon, A., Hantson, W., Hayes, D., Breen, A., Serbin, S., 2019. A UAS Platform for Assessing Spectral, Structural, and Thermal Patterns of Arctic Tundra Vegetation. Igarss 2019 - 2019 Ieee Int Geoscience Remote Sens Symposium 9113–9116. https://doi.org/10.1109/igarss.2019.8897953 

Liu, X., Cui, X., Guo, L., Chen, J., Li, W., Yang, D., Cao, X., Chen, X., Liu, Q., Lin, H., 2019. Non-invasive estimation of root zone soil moisture from coarse root reflections in ground-penetrating radar images. Plant Soil 436, 623–639. https://doi.org/10.1007/s11104-018-03919-5 

Guo, Z., Yang, D., Chen, J., Cui, X., 2018. A new index for mapping the ‘blue steel tile’ roof dominated industrial zone from Landsat imagery. Remote Sens Lett 9, 578–586. https://doi.org/10.1080/2150704x.2018.1452057  

Yang, D., Chen, J., Zhou, Y., Chen, Xiang, Chen, Xuehong, Cao, X., 2017. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. Isprs J Photogramm 128, 47–60. https://doi.org/10.1016/j.isprsjprs.2017.03.002  

Yang, D., Chen, X., Chen, J., Cao, X., 2017. Multiscale Integration Approach for Land Cover Classification Based on Minimal Entropy of Posterior Probability. Ieee J Sel Top Appl 10, 1105–1116. https://doi.org/10.1109/jstars.2016.2615073  

Yang, D., Sun, S., Chen, J., Liu, X., 2016. Analysis for the spatial and temporal patterns of plasticulture in Shandong province, China with remotely sensed data. 2016 Fifth Int Conf Agro-geoinformatics Agro-geoinformatics 1–4. https://doi.org/10.1109/agro-geoinformatics.2016.7577663  

Chen, X., Yang, D., Chen, J., Cao, X., 2015. An improved automated land cover updating approach by integrating with downscaled NDVI time series data. Remote Sens Lett 6, 29–38. https://doi.org/10.1080/2150704x.2014.998793 

Cai, Q., Liu, N., Dai, W., Yang, D., 2015. The Robust Kalman Filtering with Continuous Variable Equivalent Weight Function. Journal of Geodesy and Geodynamics.