Skip to main content
SHARE
Publication

Can Large-Scale Satellite Products Track the Effects of Atmospheric Dryness and Soil Water Deficit on Ecosystem Productivity Under Droughts?

Publication Type
Journal
Journal Name
Geophysical Research Letters
Publication Date
Volume
52
Issue
8

Drought stress, characterized by increased vapor pressure deficit (VPD) and soil water content (SWC) deficit, significantly impacts ecosystem productivity (GPP). Accurately assessing these factors in satellite remote sensing (RS) GPP products is crucial for understanding the large-scale ecological consequences of drought. However, the accuracy of RS GPP in capturing the effects of VPD and SWC deficit, compared to EC flux data, remains under-investigated. Here we evaluated 10 RS GPP products and their mean (RSmean) concerning VPD and SWC deficit across diverse ecosystems along a dryness gradient. Our results revealed that RSmean and individual products generally capture the GPP response direction (VPD: mainly negative, SWC deficit: mixed positive/negative) but consistently misestimate the absolute GPP changes. This discrepancy is ecosystem-specific and consistent across all RS products, underscoring the need to enhance RS products to better account for ecosystem-specific VPD effects and non-linear SWC deficit responses, thereby improving RS GPP accuracy under drought.