
We developed a novel uncertainty-aware framework MatPhase to predict material phases of electrodes from low contrast SEM images.
We developed a novel uncertainty-aware framework MatPhase to predict material phases of electrodes from low contrast SEM images.
We released two open-source datasets named GDB-9-Ex and ORNL_AISD-Ex that provide calculations of electronic excitation energies and their associated oscillator strengths based on the time-dependent density-functional tight-binding (TD-DFTB) method.
A multidisciplinary team of researchers from Oak Ridge National Laboratory and the University of Texas at Austin developed a new machine-learning-based reduced-order model called GrainNN to predict the grain structure that forms as a metal solidifies.
A multidisciplinary team of researchers from Oak Ridge National Laboratory (ORNL) developed a new online heatmap method, named hilomap, to visualize geospatial datasets as online map layers when low and high trends are equally important to map users.
Members and students of the Computational Urban Sciences group demonstrated a method for generating scenarios of urban neighborhood growth based on existing physical structures and placement of buildings in neighborhoods.
Researchers at ORNL have created a unique simulation technology that allows software systems to participate in slower than real time simulation exercises, and to accomplish this without requiring recompilation of source code, relinking of object files,
A multi-institutional team of ORNL has utilized the latest computational algorithms and parallelization techniques to enable faster than real-time simulations and applied it to the power system network whose time-domain model represents very large and h
Researchers from ORNL, Stanford University, and Purdue University developed and demonstrated a novel, fully functional quantum local area network (QLAN).
As the growth of data sizes continues to outpace computational resources, there is a pressing need for data reduction techniques that can significantly reduce the amount of data and quantify the error incurred in compression.