Skip to main content
SHARE
Publication

Uncooled infrared imaging using bimaterial microcantilever arrays...

by Dragoslav Grbovic, Nickolay V Lavrik, Slobodan Rajic, Panagiotis G Datskos
Publication Type
Conference Paper
Journal Name
Proceedings of SPIE
Publication Date
Volume
6206
Issue
62061
Conference Name
SPIE Defense and Security Symposium
Conference Location
Orlando (Kissimmee), Florida, United States of America
Conference Date
-

We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.