Skip to main content

Transferring a Molecular Foundation Model for Polymer Property Predictions

Publication Type
Journal Name
Journal of Chemical Information and Modeling
Publication Date
Page Numbers
7689 to 7698

Transformer-based large language models have remarkable potential to accelerate design optimization for applications such as drug development and material discovery. Self-supervised pretraining of transformer models requires large-scale data sets, which are often sparsely populated in topical areas such as polymer science. State-of-the-art approaches for polymers conduct data augmentation to generate additional samples but unavoidably incur extra computational costs. In contrast, large-scale open-source data sets are available for small molecules and provide a potential solution to data scarcity through transfer learning. In this work, we show that using transformers pretrained on small molecules and fine-tuned on polymer properties achieves comparable accuracy to those trained on augmented polymer data sets for a series of benchmark prediction tasks.