Skip to main content

A Review of Bayesian Networks for Spatial Data...

by Christopher L Krapu, Robert N Stewart, Amy N Rose
Publication Type
Journal Name
ACM Transactions on Spatial Algorithms and Systems
Publication Date

Bayesian networks are a popular class of multivariate probabilistic models as they allow for the translation of prior beliefs about conditional dependencies between variables to be easily encoded into their model structure. Due to their widespread usage, they are often applied to spatial data for inferring properties of the systems under study and also generating predictions for how these systems may behave in the future. We review published research on methodologies for representing spatial data with Bayesian networks and also summarize the application areas for which Bayesian networks are employed in the modeling of spatial data. We find that a wide variety of perspectives are taken, including a GIS-centric focus on efficiently generating geospatial predictions, a statistical focus on rigorously constructing graphical models controlling for spatial correlation, as well as a range of problem-specific heuristics for mitigating the effects of spatial correlation and dependency arising in spatial data analysis. Special attention is also paid to potential future directions for integration of Bayesian networks with spatial processes.