Abstract
An electrothermal-arc plasma source (ET-Arc) has been developed to produce transient plasma heat and particle fluxes similar to those produced by edge localized modes onto divertor plasma-facing components in tokamaks. The ET-Arc utilizes a capacitive discharge to send current through a 4-mm-diameter, 9-cm-long capillary source liner. The liner material is ablated to form a high-velocity plasma jet that impacts the target downstream. With the current discharge circuit configuration, pulse lengths are 1 to 2 ms in duration and deliver heat fluxes of 0.25 to 2.1 GW m−2. The plasma was previously characterized with optical emission spectroscopy (OES) on helium emission lines. The He I line ratios were interpreted with collisional radiative analysis to calculate ne and Te. The electron temperature and electron density ranged from Te = 1 to 5 eV and ne = 1022 to 1028 electrons/m3, respectively.