Skip to main content
SHARE
Publication

Length-scale Effects in Cascade Damage Production in Iron...

by Roger E Stoller, Yury N Osetskiy, Paul J Kamenski
Publication Type
Conference Paper
Publication Date
Page Numbers
109 to 120
Volume
1125
Conference Name
MRS Symposium R
Conference Location
Boston, Massachusetts, United States of America
Conference Date
-

Molecular dynamics simulations provide an atomistic description of the processes that control primary radiation damage formation in atomic displacement cascades. An extensive database of simulations describing cascade damage production in single crystal iron has been compiled using a modified version of the interatomic potential developed by Finnis and Sinclair. This same potential has been used to investigate primary damage formation in nanocrystalline iron in order to have a direct comparison with the single crystal results. A statistically significant number of simulations were carried out at cascade energies of 10 keV and 20 keV and temperatures of 100 and 600K to make this comparison. The results demonstrate a significant influence of nearby grain boundaries as a sink for mobile defects during the cascade cooling phase. This alters the residual primary damage that survives the cascade event. Compared to single crystal, substantially fewer interstitials survive in the nanograined iron, while the number of surviving vacancies is similar or slightly greater than the single crystal result. The fraction of the surviving interstitials contained in clusters is also reduced. The asymmetry in the survival of the two types of point defects is likely to alter damage accumulation at longer times.