Abstract
Traffic congestion has substantially induced significant mobility and energy inefficiency. Many research challenges are identified in traffic signal control and management associated with artificial intelligence (AI)-based models. For example, developing AI-driven dynamic traffic system models that accurately capture high-resolution traffic attributes and formulate robust control algorithms for traffic signal optimization is difficult. Additionally, uncertainties in traffic system modeling and control processes can further complicate traffic signal system controllability. To partially address these challenges, this study presents a novel, hybrid neural network model enhanced with a probability density function kernel shaping technique to formulate traffic system dynamics better and improve comprehensive traffic network modeling and control. The numerical experimental tests were conducted, and the results demonstrate that the proposed control approach outperforms the baseline control strategies and reduces overall average delays by 11.64% on average. By leveraging the capabilities of this innovative model, this study aims to address major challenges related to traffic congestion and energy inefficiency toward more effective and adaptable AI-based traffic control systems.