Skip to main content

Experimental Evaluation of Deformation and Fracture Mechanisms in Highly Irradiated Austenitic Steels...

by Maxim N Gussev, Nitish Bibhanshu, James T Dixon, Thomas M Rosseel
Publication Type
ORNL Report
Publication Date

The present report documents recent experimental results of analysis using scanning electron microscopy/electron backscatter diffraction (SEM-EBSD) of plastic deformation mechanisms and strain localization phenomena in austenitic steels irradiated by neutrons. Experiments were performed with specimens irradiated to 125 dpa and, additionally, with specimens that experienced radiation-induced swelling up to 3%.

Section 1 briefly analyzes the deformation localization in irradiated steels and its consequences on the material performance. The section describes the advantages and importance of the SEM-EBSD approach combined with in situ mechanical testing capability. Section 2 briefly introduces the experimental tools and methods (i.e., SEM/EBSD in situ tensile frame, electric discharge machine to manufacture irradiated specimens) and describes the investigated materials (i.e., element composition, irradiation conditions, and general microstructure).

Section 3 describes the key experimental results and provides a brief analysis and comparison with the datasets obtained earlier within the same task (i.e., low-dose specimens). The discussion focuses on EBSD microstructure maps with strain localization features, misorientation evolution as a function of strain, and observed deformation mechanisms. Section 4 evaluates data collected in recent years on highly irradiated steel and estimates the possible misorientation evolution under irradiation. The section introduces and discusses the concept of in-service-induced damage as an irradiation-assisted stress-corrosion cracking precursor.

Section 5 summarizes the work performed. As expected, the present work results are beneficial for exploring and understanding degradation mechanisms in highly irradiated in-core materials found in light water reactors after long-term in-service life.