Abstract
Access to continuous, quality assessed meteorological data is critical for understanding the climatology and atmospheric dynamics of a region. Research facilities like Oak Ridge National Laboratory (ORNL) rely on such data to assess site-specific climatology, model potential emissions, establish safety baselines, and prepare for emergency scenarios. To meet these needs, on-site towers at ORNL collect meteorological data at 15-minute and hourly intervals. However, data measurements from meteorological towers are affected by sensor sensitivity, degradation, lightning strikes, power fluctuations, glitching, and sensor failures, all of which can affect data quality. To address these challenges, we conducted a comprehensive quality assessment and processing of five years of meteorological data collected from ORNL at 15-minute intervals, including measurements of temperature, pressure, humidity, wind, and solar radiation. The time series of each variable was pre-processed and gap-filled using established meteorological data collection and cleaning techniques, i.e., the time series were subjected to structural standardization, data integrity testing, automated and manual outlier detection, and gap-filling. The data product and highly generalizable processing workflow developed in Python Jupyter notebooks are publicly accessible online. As a key contribution of this study, the evaluated 5-year data will be used to train atmospheric dispersion models that simulate dispersion dynamics across the complex ridge-and-valley topography of the Oak Ridge Reservation in East Tennessee.