For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For his seminal work on elucidating key molecular-scale mechanisms that govern biogeochemical transformation of contaminants, trace metals, and natural organic matter, which has made significant contributions to the understanding of natural organic and metal cycling in terrestrial ecosystems and remediation of contaminated sites, and also for his contributions to the development of the next generation of scientists and engineers.
For pioneering advances in the field of materials chemistry for the design, synthesis and fabrication of new materials and their translation into new energy technologies, including superconductor wires, electrodes for batteries, solar cells, lithium extraction from geothermal brine and additive manufacturing of magnets, and also for his leadership in developing the next generation of scientists and engineers.
For research leading to the development of new materials and to the solution of a wide range of fundamental and applied problems in solid-state science through the application of modern methods for the synthesis and characterization of ceramics, glasses, and alloys and the growth of single crystals.
For playing a substantial and lead role in developing and establishing the structural design methodology that is vital to safe and reliable nuclear power, including the development of high-temperature design analysis methods and code rules that are used worldwide.