Skip to main content
In a proposed carbon-capture method, magnesium oxide crystals on the ground bind to carbon dioxide molecules from the surrounding air, triggering the formation of magnesium carbonate. The magnesium carbonate is then heated to convert it back to magnesium oxide and release the carbon dioxide for placement underground, or sequestration. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Magnesium oxide is a promising material for capturing carbon dioxide directly from the atmosphere and injecting it deep underground to limit the effects of climate change. ORNL scientists are exploring ways to overcome an obstacle to making the technology economical.

Frontier’s exascale power enables the Simple Cloud-Resolving E3SM Atmosphere Model to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Ben Hillman/Sandia National Laboratories, U.S. Dept. of Energy

A 19-member team of scientists from across the national laboratory complex won the Association for Computing Machinery’s 2023 Gordon Bell Special Prize for Climate Modeling for developing a model that uses the world’s first exascale supercomputer to simulate decades’ worth of cloud formations.

Mat Doucet, left, of Oak Ridge National Laboratory and Sarah Blair of the National Renewable Energy Lab used neutrons to understand an electrochemical way to produce ammonia

Scientists from Stanford University and the Department of Energy’s Oak Ridge National Laboratory are turning air into fertilizer without leaving a carbon footprint. Their discovery could deliver a much-needed solution to help meet worldwide carbon-neutral goals by 2050.

From left, Cable-Dunlap, Chi, Smith and Thornton have been named ORNL Corporate Fellows. Credit: ORNL, U.S. Dept. of Energy

Four researchers at the Department of Energy’s Oak Ridge National Laboratory have been named ORNL Corporate Fellows in recognition of significant career accomplishments and continued leadership in their scientific fields.

Sangkeun “Matt” Lee received the Best Poster Award at the Institute of Electrical and Electronics Engineers 24th International Conference on Information Reuse and Integration.

Lee's paper at the August conference in Bellevue, Washington, combined weather and power outage data for three states – Texas, Michigan and Hawaii –  and used a machine learning model to predict how extreme weather such as thunderstorms, floods and tornadoes would affect local power grids and to estimate the risk for outages. The paper relied on data from the National Weather Service and the U.S. Department of Energy’s Environment for Analysis of Geo-Located Energy Information, or EAGLE-I, database.

(Right to left) Carbon capture by aqueous glycine: the amino acid’s attack on carbon dioxide (reactant state) is strongly influenced by the water dynamics, leading to a slow transition to an intermediate state. In the next step, due to reduced nonequilibrium solvent effects, a proton is rapidly released leading to the product state. Credit: Santanu Roy/ORNL, U.S. Dept. of Energy

Recent research by ORNL scientists focused on the foundational steps of carbon dioxide sequestration using aqueous glycine, an amino acid known for its absorbent qualities.

A new method for analyzing climate models brings together information from various lines of evidence to represent Earth’s climate sensitivity. Credit: Jason Smith/ORNL, U.S. Dept. of Energy

Researchers from institutions including ORNL have created a new method for statistically analyzing climate models that projects future conditions with more fidelity.

ORNL’s Climate Change Science Institute and Georgia Tech co-hosted a Southeast Decarbonization Workshop in November 2023. Credit: ORNL, U.S. Dept. of Energy

ORNL's Climate Change Science Institute and the Georgia Institute of Technology hosted a Southeast Decarbonization Workshop in November that drew scientists and representatives from government, industry, non-profits and other organizations to strategize about clean energy opportunities unique to the southeastern United States.

Front row: Victoria DiStefano and Dr. Asmeret Asefaw Berhe of DOE toured the SPRUCE experiment with Natalie Griffiths, Melanie Mayes, and Verity Salmon; back row: Dave Weston, Stephen Sebestyen (US Forest Service), Jonathan Stelling, Mark Guilliams, John Latimer (ORNL contractor), Kyle Pearson and Paul Hanson. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The first climate scientist to head the Department of Energy’s Office of Science, Dr. Asmeret Asefaw Berhe, recently visited two ORNL-led field research facilities in Minnesota and Alaska to witness how these critically important projects are informing our understanding of the future climate and its impact on communities.

Scientists at Oak Ridge National Laboratory contributed to several chapters of the Fifth National Climate Assessment, providing expertise in complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling. Credit: ORNL, U.S. Dept. of Energy

Scientists at ORNL used their knowledge of complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling to inform the nation’s latest National Climate Assessment, which draws attention to vulnerabilities and resilience opportunities in every region of the country.