Skip to main content
: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

ORNL Associate Laboratory Director for Computing and Computational Sciences. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Gina Tourassi, associate laboratory director for computing and computational sciences at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory, has been named a fellow of the Institute of Electrical and Electronics Engineers, the world’s largest organization for technical professionals.

Conversion of an atomic structure into a graph, where atoms are treating as nodes and interatomic bonds as edges. Credit: Massimiliano “Max” Lupo Pasini/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge and Lawrence Berkeley National Laboratories are evolving graph neural networks to scale on the nation’s most powerful computational resources, a necessary step in tackling today’s data-centric

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

Prasanna Balaprakash, who leads ORNL’s AI Initiative, participated in events hosted by the White House Office of Science and Technology Policy and the Task Force on American Innovation to discuss the challenges and opportunities posed by AI. Credit: Brian Mosley/Computing Research Association

In summer 2023, ORNL's Prasanna Balaprakash was invited to speak at a roundtable discussion focused on the importance of academic artificial intelligence research and development hosted by the White House Office of Science and Technology Policy and the U.S. National Science Foundation.

Photo by James Wainscoat on Unsplash.

A team of researchers from the University of Southern California, the Renaissance Computing Institute at the University of North Carolina, and Oak Ridge, Lawrence Berkeley and Argonne National Laboratories have received a grant from the U.S. Department of Energy to develop the fundamentals of a computational platform that is fault tolerant, robust to various environmental conditions and adaptive to workloads and resource availability.

A researcher plays checkers against an AI-powered robotic arm in 1984. Credit: ORNL, U.S. Dept. of Energy

Despite its futuristic essence, artificial intelligence has a history that can be traced through several decades, and the ORNL has played a major role. From helping to drive fundamental and applied AI research from the field’s early days focused on expert systems, computer programs that rely on AI, to more recent developments in deep learning, a form of AI that enables machines to make evidence-based decisions, the lab’s AI research spans the spectrum.

Alex May, pictured above, is the first and only full-time data curator at the Department of Energy’s Oak Ridge Leadership Computing Facility. Credit: Carlos Jones and Wikimedia Commons, background/ORNL, U.S. Dept. of Energy
Alex May is the first and only full-time data curator at the Department of Energy’s Oak Ridge Leadership Computing Facility, evaluating datasets developed by computational scientists before they are made public through the OLCF’s Constellation portal for open data exchange.
The AI agent, incorporating a language model-based molecular generator and a graph neural network-based molecular property predictor, processes a set of user-provided molecules (green) and produces/suggests new molecules (red) with desired chemical/physical properties (i.e. excitation energy). Image credit: Pilsun You, Jason Smith/ORNL, U.S. DOE

A team of computational scientists at ORNL has generated and released datasets of unprecedented scale that provide the ultraviolet visible spectral properties of over 10 million organic molecules. 

Image of circuitry representing AI.

Research performed by a team, including scientists from ORNL and Argonne National Laboratory, has resulted in a Best Paper Award at the 19th IEEE International Conference on eScience.