Skip to main content
From left, J.D. Rice, Trevor Michelson and Chris Seck look at a monitor in Seck’s lab. The three are wearing safety glasses to protect against the laser beams used by the scanning vibrometer, which is helping Seck quantify vibration of an appliance in his lab. Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL scientists are working on a project to engineer and develop a cryogenic ion trap apparatus to simulate quantum spin liquids, a key research area in materials science and neutron scattering studies.

A Univ. of Michigan-led team used Frontier, the world’s first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinery’s 2023 Gordon Bell Prize for their study that used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

XACC enables the programming of quantum code alongside standard classical code and integrates quantum computers from a number of vendors. This animation illustrates how QPUs complete calculations and return results to the host CPU, a process that could drastically accelerate future scientific simulations. Credit: Michelle Lehman/Oak Ridge National Laboratory, U.S. Dept. of Energy

In the early 2000s, high-performance computing experts repurposed GPUs — common video game console components used to speed up image rendering and other time-consuming tasks