Skip to main content
ORNL Image

Researchers used neutrons to probe a running engine at ORNL’s Spallation Neutron Source

Pellet selector

When it’s up and running, the ITER fusion reactor will be very big and very hot, with more than 800 cubic meters of hydrogen plasma reaching 170 million degrees centigrade. The systems that fuel and control it, on the other hand, will be small and very cold. Pellets of frozen gas will be shot int...

Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms.

For more than 50 years, scientists have debated what turns particular oxide insulators, in which electrons barely move, into metals, in which electrons flow freely.

ORNL Image

ITER, the international fusion research facility now under construction in St. Paul-lez-Durance, France, has been called a puzzle of a million pieces. US ITER staff at Oak Ridge National Laboratory are using an affordable tool—desktop three-dimensional printing, also known as additive printing—to help them design and configure components more efficiently and affordably.

Bio-SANS detector staff in front of equipment.

Bio-SANS, the Biological Small-Angle Neutron Scattering Instrument at HFIR recently had a detector upgrade that will provide significantly improved performance that is more in line with the instrument’s capability.

Illustration of the change in architecture of the essential eukaryotic ssDNA binding protein RPA as it engages progressively longer segments of ssDNA.

We now know that many serious diseases have genetic links that a geneticist can find by reading an individual’s genome─the DNA double helix where our organism’s hereditary information is encoded. Researchers know too that a particular protein protects our DNA, which is vulnerable to entanglement when its information is read and to attack from enzymes that damage the strands, making the code indecipherable.

neutron scattering with contrast variation reveals the coil conformation of single polymer molecules in a blend of PSS and PDADMA.

Researchers at the Bio-SANS instrument at the High Flux Isotope Reactor (HFIR) used small-angle neutron scattering (SANS) to get a first insight into the conformation of single polyelectrolyte chains in large pieces of the synthetic complex. The research pursues applications for replacement of intervertebral discs in the spine and of knee cartilage.

Oak Ridge National Laboratory entrance sign

Researchers have long thought that formation of insoluble fibrous “strings” of self-assembling proteins might be involved in the progression of a number of diseases, including neurodegenerative disorders such as Alzheimer’s and Parkinson’s. However, recent evidence suggests that aggregates that develop at an earlier stage than fibril formation, and accumulate in human organs, may be the primary toxic agents.


 

biomass chart

The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. However, this type of biomass is a complex, composite biological material that shows significant recalcitrance to enzymatic breakdown into sugars that can be used for fermentation, currently making it cost-ineffective as an ethanol source. The present research provides insight into the consequences of dilute acid pretreatment of biomass through direct observation by small-angle neutron scattering (SANS) of structural features in cellulose extracted from switchgrass over length scales from 10 to 6000 Å.