Skip to main content
ORNL’s Prasanna Balaprakash joined leading computing experts to provide insight into how supercomputing, AI and meteorology can work together to advance weather and climate research as part of a panel for the United States Senate.

Prasanna Balprakash, director of AI programs for ORNL, discussed advancing climate and weather research through high performance computing and artificial intelligence as part of a September 18 panel for the United States Senate. 

The AI for Energy Report provides a framework for using AI to accelerate decarbonization of the U.S. economy. Credit: Argonne National Laboratory

Groundbreaking report provides ambitious framework for accelerating clean energy deployment while minimizing risks and costs in the face of climate change.

ORNL scientists developed a method that improves the accuracy of the CRISPR Cas9 gene editing tool used to modify microbes for renewable fuels and chemicals production. This research draws on the lab’s expertise in quantum biology, artificial intelligence and synthetic biology. Credit: Philip Gray/ORNL, U.S. Dept. of Energy

Scientists at ORNL used their expertise in quantum biology, artificial intelligence and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions. Credit: Getty Images

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions.

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

An ORNL-led team comprising researchers from multiple DOE national laboratories is using artificial intelligence and computational screening techniques – in combination with experimental validation – to identify and design five promising drug therapy approaches to target the SARS-CoV-2 virus.

ATOM logo

The Accelerating Therapeutics for Opportunities in Medicine , or ATOM, consortium today announced the U.S. Department of Energy’s Oak Ridge, Argonne and Brookhaven national laboratories are joining the consortium to further develop ATOM’s artificial intelligence, or AI-driven, drug discovery platform.

(From left) ORNL Associate Laboratory Director for Computing and Computational Sciences Jeff Nichols; ORNL Health Data Sciences Institute Director Gina Tourassi; DOE Deputy Under Secretary for Science Thomas Cubbage; ORNL Task Lead for Biostatistics Blair Christian; and ORNL Research Scientist Ioana Danciu were invited to the White House to showcase an ORNL-developed digital tool aimed at better matching cancer patients with clinical trials.

OAK RIDGE, Tenn., March 4, 2019—A team of researchers from the Department of Energy’s Oak Ridge National Laboratory Health Data Sciences Institute have harnessed the power of artificial intelligence to better match cancer patients with clinical trials.