Skip to main content
Illustration of the GRETA detector, a spherical array of metal cylinders. The detector is divided into two halves to show the inside of the machine. Both halves are attached to metal harnesses, displayed against a black and green cyber-themed background.

Analyzing massive datasets from nuclear physics experiments can take hours or days to process, but researchers are working to radically reduce that time to mere seconds using special software being developed at the Department of Energy’s Lawrence Berkeley and Oak Ridge national laboratories.  

Summit Supercomputer

Scientists conducted a groundbreaking study on the genetic data of over half a million U.S. veterans, using tools from the Oak Ridge National Laboratory to analyze 2,068 traits from the Million Veteran Program.

ORNL seismic researcher Chengping Chai placed seismic sensors on the ground at various distances from an ORNL nuclear reactor to learn whether they could detect its operating state. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Like most scientists, Chengping Chai is not content with the surface of things: He wants to probe beyond to learn what’s really going on. But in his case, he is literally building a map of the world beneath, using seismic and acoustic data that reveal when and where the earth moves.

ORNL, VA and Harvard researchers developed a sparse matrix full of anonymized information on what is thought to be the largest cohort of healthcare data used for this type of research in the U.S. The matrix can be probed with different methods, such as KESER, to gain new insights into human health. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team of researchers has developed a novel, machine learning–based  technique to explore and identify relationships among medical concepts using electronic health record data across multiple healthcare providers.

The image shows a visualization of a radiation transport simulation for a spaceflight radioisotope power system and complex interactions of radiation fields with operational environments. Credit: Michael B. R. Smith and M. Scott Greenwood/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory are developing a first-of-a-kind toolkit drawing on video game development software to visualize radiation data.

Coronavirus graphic

In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s Oak Ridge National Laboratory are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron science.

The image visualizes how the team’s multitask convolutional neural network classifies primary cancer sites. Image credit: Hong-Jun Yoon/ORNL

As the second-leading cause of death in the United States, cancer is a public health crisis that afflicts nearly one in two people during their lifetime.

ORNL’s collaboration with Cincinati Children’s Hospital Medical Center will leverage the lab’s expertise in high-performance computing and safe, secure recordkeeping. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy

Oak Ridge National Laboratory will partner with Cincinnati Children’s Hospital Medical Center to explore ways to deploy expertise in health data science that could more quickly identify patients’ mental health risk factors and aid in

Molecular dynamics simulations of the Fs-peptide revealed the presence of at least eight distinct intermediate stages during the process of protein folding. The image depicts a fully folded helix (1), various transitional forms (2–8), and one misfolded state (9). By studying these protein folding pathways, scientists hope to identify underlying factors that affect human health.

Using artificial neural networks designed to emulate the inner workings of the human brain, deep-learning algorithms deftly peruse and analyze large quantities of data. Applying this technique to science problems can help unearth historically elusive solutions.

(From left) ORNL Associate Laboratory Director for Computing and Computational Sciences Jeff Nichols; ORNL Health Data Sciences Institute Director Gina Tourassi; DOE Deputy Under Secretary for Science Thomas Cubbage; ORNL Task Lead for Biostatistics Blair Christian; and ORNL Research Scientist Ioana Danciu were invited to the White House to showcase an ORNL-developed digital tool aimed at better matching cancer patients with clinical trials.

OAK RIDGE, Tenn., March 4, 2019—A team of researchers from the Department of Energy’s Oak Ridge National Laboratory Health Data Sciences Institute have harnessed the power of artificial intelligence to better match cancer patients with clinical trials.