Filter News
Area of Research
News Type
News Topics
- (-) Advanced Reactors (2)
- (-) Cybersecurity (3)
- 3-D Printing/Advanced Manufacturing (3)
- Artificial Intelligence (26)
- Big Data (32)
- Bioenergy (5)
- Biology (6)
- Biomedical (7)
- Biotechnology (3)
- Buildings (3)
- Chemical Sciences (2)
- Clean Water (3)
- Computer Science (36)
- Coronavirus (2)
- Emergency (1)
- Energy Storage (1)
- Environment (27)
- Exascale Computing (8)
- Frontier (8)
- Fusion (2)
- Grid (6)
- High-Performance Computing (15)
- Hydropower (2)
- Isotopes (1)
- ITER (1)
- Machine Learning (13)
- Materials Science (6)
- Mathematics (2)
- Microscopy (2)
- Molten Salt (1)
- Nanotechnology (4)
- National Security (24)
- Neutron Science (2)
- Nuclear Energy (3)
- Physics (4)
- Quantum Science (1)
- Security (4)
- Simulation (6)
- Space Exploration (1)
- Statistics (2)
- Summit (10)
- Transportation (5)
Media Contacts

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear reactor. The findings mark a major step towards improving nuclear fusion facilities.

Inspired by one of the mysteries of human perception, an ORNL researcher invented a new way to hide sensitive electric grid information from cyberattack: within a constantly changing color palette.

An Oak Ridge National Laboratory team developed a novel technique using sensors to monitor seismic and acoustic activity and machine learning to differentiate operational activities at facilities from “noise” in the recorded data.

A team of collaborators from ORNL, Google Inc., Snowflake Inc. and Ververica GmbH has tested a computing concept that could help speed up real-time processing of data that stream on mobile and other electronic devices.

From materials science and earth system modeling to quantum information science and cybersecurity, experts in many fields run simulations and conduct experiments to collect the abundance of data necessary for scientific progress.