Robert Hettich: Decoding biological complexity with next-gen mass spectrometry
Filter News
Area of Research
News Type
News Topics
- (-) Isotopes (1)
- (-) Mathematics (2)
- 3-D Printing/Advanced Manufacturing (3)
- Advanced Reactors (2)
- Artificial Intelligence (26)
- Big Data (32)
- Bioenergy (5)
- Biology (6)
- Biomedical (7)
- Biotechnology (3)
- Buildings (3)
- Chemical Sciences (2)
- Clean Water (3)
- Computer Science (36)
- Coronavirus (2)
- Cybersecurity (3)
- Emergency (1)
- Energy Storage (1)
- Environment (27)
- Exascale Computing (8)
- Frontier (8)
- Fusion (2)
- Grid (6)
- High-Performance Computing (15)
- Hydropower (2)
- ITER (1)
- Machine Learning (13)
- Materials Science (6)
- Microscopy (2)
- Molten Salt (1)
- Nanotechnology (4)
- National Security (24)
- Neutron Science (2)
- Nuclear Energy (3)
- Physics (4)
- Quantum Science (1)
- Security (4)
- Simulation (6)
- Space Exploration (1)
- Statistics (2)
- Summit (10)
- Transportation (5)
Media Contacts

John Lagergren, a staff scientist in Oak Ridge National Laboratory’s Plant Systems Biology group, is using his expertise in applied math and machine learning to develop neural networks to quickly analyze the vast amounts of data on plant traits amassed at ORNL’s Advanced Plant Phenotyping Laboratory.

In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s Oak Ridge National Laboratory are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron science.

Oak Ridge National Laboratory provided significant contributions and coordination in the development of the Nuclear Energy Agency’s (NEA’s) recently released Spent Fuel Isotopic Composition (SFCOMPO) 2.0—the world’s largest open database for spent