Skip to main content
ORNL researcher Van Graves examines a transparent cylindrical device he developed and tested at CERN in 2007 to demonstrate that a jet of liquid mercury could serve as a target for a neutrino factory or muon collider.

Van Graves, an engineering manager at ORNL, is celebrating 40 years of dedicated service leading a diverse range of prominent engineering projects at ORNL and internationally. 

Graphic depiction of a neutron star, which looks like orange beans inside a cage

Using the Frontier supercomputer, a team of researchers from the Massachusetts Institute of Technology conducted large-scale calculations to chart the isospin density of a neutron star across a range of conditions. Their work provides new insights into how pressure and density interact within neutron stars, offering important predictions about their inner workings.

Illustration of the GRETA detector, a spherical array of metal cylinders. The detector is divided into two halves to show the inside of the machine. Both halves are attached to metal harnesses, displayed against a black and green cyber-themed background.

Analyzing massive datasets from nuclear physics experiments can take hours or days to process, but researchers are working to radically reduce that time to mere seconds using special software being developed at the Department of Energy’s Lawrence Berkeley and Oak Ridge national laboratories.  

ORNL researcher Jesse Labbe is working with plants in a greenhouse. He is framed on all sides with bright green leaves

Jesse Labbé aims to leverage biology, computation and engineering to address societal challenges related to energy, national security and health, while enhancing U.S. competitiveness. Labbé emphasizes the importance of translating groundbreaking research into practical applications that have real-world impact.

Scientist standing beside mass spectrometry equipment in a laboratory, with instrumentation panels and analysis tools visible in the background

Robert “Bob” Hettich, an ORNL Corporate Fellow, is a pioneer in using mass spectrometry to uncover how microbes interact within complex environments and influence larger systems like plants and humans. A founder of the field of metaproteomics, he leads research that supports bioenergy, environmental resilience and health through advanced protein analysis.

Erica Prates is presenting to a group of attendees at Vandy workshop in a table conference room, standing next to a screen glowing in white

Scientists at the Department of Energy’s Oak Ridge National Laboratory recently welcomed Vanderbilt University colleagues for a symposium on basic science research, with a focus on potential collaborations in the biomedical and biotechnology spaces.

Research scientist Daniel Jacobson is standing with his arms crossed with a dark black backdrop

Daniel Jacobson, distinguished research scientist in the Biosciences Division at ORNL, has been elected a Fellow of the American Institute for Medical and Biological Engineering, or AIMBE, for his achievements in computational biology. 

Four researchers are standing next to a research rector that is glowing blue

A team from ORNL, joined by university students, recently traveled to the Ohio State University Research Reactor to conduct a novel experiment on nuclear thermal rocket fuel coatings — one that could help propel NASA’s astronauts to Mars faster and more efficiently. 

A deep look inside a cell membrane showing the production of materials from plant biomass, shown with shapes that consist of four green balls connected with a red ball on one end, dotted with smaller white balls on each surface.

Scientists at ORNL and the University of Cincinnati achieved a breakthrough in understanding the vulnerability of microbes to the butanol they produce during fermentation of plant biomass. The discovery could pave the way for more efficient production of domestic fuels, chemicals and materials.

Two cylinders on each side of the photo are pointing to bright glowing orb in the center.

Scientists at ORNL have developed a method that can track chemical changes in molten salt in real time — helping to pave the way for the deployment of molten salt reactors for energy production.